Outline of Course of Study

Faculty of Engineering Secondary School
Department of Engineering
Department Head: Carolyne Bjerring
Teacher: Anthony Cozzarini
Course development date: December 12, 2018
Course reviser: Carolyne Bjerring
Revision Date: June 16th, 2021
Course title: Introduction to Computer Studies
Grade: 10
Type: Open
Ministry Course Code: ICS2O
Credit value: 1.0 credit

Ministry curriculum policy documents:
- The Ontario Curriculum, Grades 10 to 12: Computer Studies, 2008 (revised)
- Ontario Schools, Kindergarten to Grade 12: Policy and Program Requirements, 2016
- Growing Success: Assessment, Evaluation, and Reporting in Ontario's Schools, Kindergarten to Grade 12, 2010

Prerequisites and corequisites: none
Course Description

This course introduces students to computer programming. Students will plan and write simple computer programs by applying fundamental programming concepts, and learn to create clear and maintainable internal documentation. They will also learn to manage a computer by studying hardware configuration, software selection, operating system functions, networking, and safe computing practices. Students will also investigate the social impact of computer technologies, and develop an understanding of environmental and ethical issues related to the use of computers.

Overall Curriculum Expectations

By the end of this course, students will:

<table>
<thead>
<tr>
<th>A. UNDERSTANDING COMPUTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>A4</td>
</tr>
<tr>
<td>A5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. INTRODUCTION TO PROGRAMMING</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>B3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. COMPUTERS AND SOCIETY</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
</tbody>
</table>
Outline of Course Content

<table>
<thead>
<tr>
<th>Unit</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Computer Hardware, Operating and Networking Systems</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Students will learn about basic computer hardware components and various operating systems. They will also explore computer networks and security by completing exercises on an online network simulation.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Computers and Society</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Students will learn about the social and environmental impacts of computer use. Students will also explore legal and ethical issues relating to the use of computing devices. In this unit, students will be required to complete a simple research project.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Programming</td>
<td>30</td>
</tr>
</tbody>
</table>
| | Students will learn how to plan the content of a program by using visual problem-solving models. Students will also learn about basic programming concepts:
 - Data types
 - Boolean and comparison operators
 - Variables
 - Selection statements | |
| 4 | Software App Development | 20 |
| | Students will master the tools in a visual programming environment to create apps that run on mobile devices like IOS and Android devices. They will learn how to properly use variables, lists, looping, conditional statements and sensors to design and program mobile apps. | |
| 5 | App Development Final Project | 30 |
| | Students will be introduced to the engineering design process and will learn how to work through problem identification, requirements definition, flowcharting and prototyping to reach a final successful implementation. They will also learn how to properly document their code. In this unit, students are required to design and build an app for their IOS or Android device. | |
Teaching & Learning Strategies

This course is intended to give high school students a good understanding of software and hardware integration using industry standards. The students will be continuously engaged in hands-on learning as they explore a visual development environment for building mobile apps. In this on-line course, students pursue mostly independent work but will take part in forum discussions as they develop the understanding required to successfully build their own app.

The framework for student learning is provided by a learning management system which provides all the necessary course lesson materials including videos, lessons, exercises and assignments. This is supplemented by scheduled sessions with the teacher and regular office hours when the teacher is available for additional help. This environment allows students to complete the assignments and projects required for the course. Their knowledge will be frequently evaluated through formative assessments of their code and documentation as well as written and multimedia assignments.

App development in this course is done with Thunkable which allows students to build apps that are compatible with either Android or IOS platforms. Students begin by mastering the functionality of individual programming objects in Thunkable and as they gain proficiency they learn to combine multiple objects to build more complex functionality. The visual nature of the Thunkable programming environment makes it easy to begin developing apps but the programming principles employed in this environment are consistent with programming in more traditional, text-based languages.

The final project of this course challenges students to take their mastery of programming, planning and project management skills to build an app with functionality of their choosing (subject to approval by their teacher).

Strategies for Assessment & Evaluation of Student Performance

Assessment, evaluation, and reporting of student achievement will be based on the policies and practices outlined in the following Ministry’s policy document Growing Success: Assessment, Evaluation, and Reporting in Ontario Schools, 2010.

Students will be evaluated based on the overall expectations of the course through the achievement charts in The Ontario Curriculum, Grades 10 to 12: Computer Studies, 2008 (revised), as outlined in this document.
The Ministry of Education’s document Growing Success: Assessment, Evaluation, and Reporting in Ontario Schools outlines policies for measuring and communicating achievement. Levels of achievement are defined as follows:

<table>
<thead>
<tr>
<th>Level</th>
<th>Percentage</th>
<th>Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>50—59%</td>
<td>Represents achievement that falls much below the provincial standard. The student demonstrates the specified knowledge and skills with limited effectiveness. Students must work at significantly improving learning in specific areas, as necessary, if they are to be successful in the next grade/course.</td>
</tr>
<tr>
<td>Level 2</td>
<td>60—69%</td>
<td>Represents achievement that approaches the provincial standard. The student demonstrates the specified knowledge and skills with some effectiveness. Students performing at this level need to work on identified learning gaps to ensure future success.</td>
</tr>
<tr>
<td>Level 3</td>
<td>70—79%</td>
<td>Represents the provincial standard for achievement. The student demonstrates the specified knowledge and skills with considerable effectiveness. Parents of students achieving at level 3 can be confident that their children will be prepared for work in subsequent grades/courses.</td>
</tr>
<tr>
<td>Level 4</td>
<td>80—100%</td>
<td>Identifies achievement that surpasses the provincial standard. The student demonstrates the specified knowledge and skills with a high degree of effectiveness. However, achievement at level 4 does not mean that the student has achieved expectations beyond those specified for the grade/course.</td>
</tr>
</tbody>
</table>

Eighty percent (80%) of the evaluation is based on daily classroom work and will be determined through a variety of methods, as outlined in the table below. Twenty percent (20%) of the evaluation will be based on a final design project which includes a prototype and presentation. This final evaluation allows the student the opportunity to demonstrate comprehensive achievement of the overall expectations of the course.

Teachers will use “assessment for learning” and “assessment as learning” practices to help students identify: where they are in relation to the learning goals and what next steps they need to take to achieve the goals.

This ongoing feedback will help prepare students for “assessment of learning”, the process of collecting and interpreting evidence for the purpose of summarizing learning at a given point in time, to make judgments about the quality of student learning on the basis of established criteria, and to assign a value to represent that quality.
Assessment breakdown for ICS2O:

<table>
<thead>
<tr>
<th>Formative Assessment, 80% of final grade</th>
<th>Percentage</th>
<th>Overall Expectation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Part Research Assignment</td>
<td>5%</td>
<td>A1, A3, A4, A5</td>
</tr>
<tr>
<td>Purchasing a Computer Assignment</td>
<td>5%</td>
<td>A1, A2, A4, C2</td>
</tr>
<tr>
<td>Various assignments on fundamental programming concepts and the engineering design process.</td>
<td>15%</td>
<td>A1, A3, B1, B2, B3</td>
</tr>
<tr>
<td>Computers and Society Research Paper</td>
<td>15%</td>
<td>C1, C2, C3, C4</td>
</tr>
<tr>
<td>Midterm Evaluation</td>
<td>5%</td>
<td>A1, A2, B1, B2</td>
</tr>
<tr>
<td>Quizzes</td>
<td>5%</td>
<td>B1, B2, B3</td>
</tr>
<tr>
<td>Selected Exercises</td>
<td>5%</td>
<td>B1, B2, B3</td>
</tr>
<tr>
<td>Multiple assignments that illustrate the student’s mastery of the functionality available in the Thunkable development environment.</td>
<td>25%</td>
<td>A1, A3, B1, B2, B3</td>
</tr>
</tbody>
</table>

Summative Assessment, 20% of final grade

<table>
<thead>
<tr>
<th>Final evaluation: Design Project</th>
<th>20%</th>
<th>A1, A2, A3, A4, A5, B1, B2, B3, C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Prototype (10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Presentation (5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>● Documentation (5%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Considerations for Program Planning

Instructional Approaches

In computer studies teachers use projects as a means for students to gain knowledge and learn new skills so that they achieve the course expectations. Because of the on-line nature of this course, collaboration is more difficult so students work is mostly independent although collaboration is encouraged while working through design and programming problems. When students are actively engaged in experiential learning, they tend to build longer-lasting skills and better retain knowledge.

Through hands-on lessons, students work individually. Step-by-step instructions and supplemental videos model new skills, and guide students through learning new coding skills.
The teacher provides direction, clarification and support until students are confident in using their new skills independently. Teachers model good program design and good coding practices to set students off on the right foot, and giving them ample time to practice new skills.

With the support of teacher modelling and ample time for practice, students will gain understanding and develop new skill sets in manageable chunks. This scaffolding approach will provide students with the support they need to reach manageable objectives.

The Importance of Current Events in Computer Studies

The discussion of current events and emerging technologies stimulates student interest and may be included in the computer studies curriculum. It enhances the relevance of the curriculum and helps students connect their lessons with real-world events or situations. Embedding current events into the lessons is an effective instructional strategy for implementing many course expectations into the curriculum.

The Role of ICT in Computer Studies

Information and communications technologies (ICT) tools allow teachers to expand their instructional strategies and support student learning. These tools include Internet websites, Youtube videos, slideshows, class forums and other multimedia resources. These tools help students collect, organize, and present data for reports and presentations. They also enable students to connect with each other and the world to be able to share ideas and collaborate on learning.

Students will be encouraged to use ICT tools for most of the course in order to learn new skills and communicate their learning. Students will have the choice of technologies they use for delivering their presentations on the impact of computers on society and to present their final app design projects to the class.

With the power of the Internet comes potential risks such as privacy, safety, and abuse of technology in the form of bullying or other malicious acts. Students must be made aware of these issues and teachers will model appropriate behaviour in their instruction. Teachers can also make use of ICT tools in their day-to-day teaching practice of curriculum design and in-class teaching.

Planning Computer Studies Programs for Students with Special Education Needs

Teachers have a duty to ensure that all students in their class have the opportunity to learn and succeed regardless of their special education needs. Special Education Transformation: The Report of the Co-Chairs with the Recommendations of the Working Table on Special Education,
2006 promotes a set of beliefs that should guide program planning for students with special education. These beliefs include:

- All students can succeed.
- Universal design and differentiated instruction are effective and interconnected means of meeting the learning or productivity needs of any group of students.
- Each student has his or her own unique patterns of learning.
- Teachers need the support of the larger community to create a learning environment that supports students with special education needs.
- Fairness is not sameness.

Teachers are encouraged to develop their program plan in accordance to their students’ diversity of strengths and abilities. This can be achieved through a myriad of ways including: assessing each student’s prior knowledge and skills, providing ongoing assessment, and allowing for flexible groupings. By assessing each student’s current achievement level and weighing that against the course expectations, the teacher can determine if the student will be requiring any combination of: accommodations, modified expectations, or alternative expectations. If the student requires accommodations, modified expectations, or both, the information must be recorded in their Individual Education Plan (IEP).

Students Requiring Accommodations Only

Accommodations that are required by students must be identified on their IEP. Differentiated instruction and universal design lend themselves well to providing accommodations for students. Students will still be evaluated on the curriculum course expectations and achievement levels communicated by the Ministry.

There are three types of accommodations:

- Instructional accommodations: Teachers change the way in which lessons are taught including integrating technology and using different styles of presentation.
- Environmental accommodations: This includes a change in the learning environment whether it be classroom seating by location or group, or lighting.
- Assessment accommodations: These allow students to demonstrate their learning in a different way. For instance, they may be given the opportunity to give oral answers to written questions or they may be given more time to complete an assignment or test.

Students Requiring Modified Expectations

Modified expectations that are required by students must be identified on their IEP. For the most part, these expectations will be based on the regular course expectations but the number and/or complexity will differ. Modified expectations are specific, realistic, and measurable achievements that the student can demonstrate independently, given assessment accommodations.
It is the principal who will decide whether the achievement of the modified expectations constitutes successful completion of the course and whether the student is eligible to receive a credit for the course; this decision must be communicated to the student and their parents.

When course expectations are not extensively modified and it is expected that the student can achieve most of them, the modified expectations should determine how the required knowledge and skills differ from those identified in the course expectations. In the case, if the student is working toward a credit for the course, the IEP box must be checked on the Provincial Report Card.

With extensive modifications to expectations such that achievement of them is not expected to result in a credit, the expectations should identify the precise requirements or tasks on which the student’s performance will be evaluated and which will be used to determine the student’s mark on the Provincial Report Card. The IEP box must be checked and the appropriate statement from the Guide to the Provincial Report Card, Grades 9-12, 1999 (p. 8) must be added. Modified expectations must be reviewed in relation to the student’s progress at least once each reporting period, and must be updated as necessary.

Program Considerations for English Language Learners

Schools in Ontario have a very diverse and multicultural student population, such that 20% of students have a language other than English as their first language. These English language learners may be recent immigrants or refugees while others may be born in Canada into a family whose primary home language is either not English or is an English dialect differing significantly from the English taught in Ontario schools. Teachers must be mindful that many of these students are entering a new linguistic and cultural environment at school.

During their first few years in an Ontario school, English language learners pay receive support through English as a Second Language (ESL) programs or English Literacy Development (ELD) programs. ELD programs are primarily for newcomers who arrive with significant gaps in their education, often due to limited opportunities (in terms of education and literacy) in their home country.

It is important that teachers recognize the orientation process whereby English language learners adapt to a new social environment and language. Some may be very quiet at first, using body language rather than speech and/or limited verbal communication to convey their thoughts. These students thrive in a safe, supportive, and welcoming environment. As the students learn to speak English, it is important to note that oral fluency is not a good indicator of the student’s literacy development and vocabulary.

It is the shared responsibility of the classroom teacher, the ESL/ELD teacher (where available), and other school staff to help in the development of students’ English. Volunteers and peers may also provide significant support. Teachers are required to adapt their instruction to
facilitate the success of their English language learner students. These adaptations may include:

- Modifying some or all course expectations such that they are challenging yet achievable given the student’s English proficiency
- Using a variety of instruction strategies, such as visual cues, pre-teaching vocabulary, offering peer tutoring
- Using a variety of learning resources, such as bilingual dictionaries, visual material, simplified text
- Modifying assessments, such as giving extra time, offering the choice of demonstrating skills/knowledge orally or in writing, assigning cloze sentences instead of essays

When learning expectations are modified for an English language learner, it must be clearly indicated on their report card.

Equity and Inclusion Education in Computer Studies

The Faculty of Engineering Secondary School abides by the University of Ottawa’s [Violence Prevention Policy](#) and [Prevention of Harassment and Discrimination Policy](#). These policies encourage staff and students to show respect for diversity in the school and the wider society. The policies aim to provide a safe learning environment, free from violence, harassment, and discrimination.

Differentiated instruction will be at the core of curriculum planning. By assessing each individual student’s abilities, background, interests and learning styles, teachers can design their lessons based on the needs of their diverse students. The course content (what is being taught), process (how it is taught), and product (how students demonstrate their learning) will be designed in relation to the students’ needs.

Generally, in technical courses such as computer science there is a clear gender disparity. Studies have shown that female students are often drawn to courses that have a societal aspect to them, rather than just abstract learning. It may be helpful for teachers to offer projects and activities that have a clear and meaningful societal application. For instance, instead of being asked to design a robotic arm (whose purpose is unknown), teacher can give students the option of designing an assistive device. Differentiated instruction offers students a choice from a range of activities or allows them to select their own projects; by giving students the power to choose their own topic, they can select something that most interests them and become more invested in the project.

Environmental Education and Computer Studies

It is important for students to understand their environmental impact in the world and how they can better the environment they are living in. It is the duty of the teacher to integrate
environmental education into their curriculum planning such that students understand their personal responsibility to the environment and their role in society.

Environmental education can be integrated into the classroom in a variety of ways. In selecting their projects, students can go the environmental route and select a project that is directly linked to environmental impact, such as a simulation of a healthy ecosystem or the consequences of an oil spill. Additionally, students can focus on the environmental impact of computer use by learning about the safe handling and disposal of materials used in the manufacturing of computer components. By implementing strategies to reduce, reuse and recycle, students can learn about government agencies and community partners that support such practices. This will give students the opportunity to develop critical thinking skills and responsible practice with respect to environmental implications of their selected project.

Programming projects can be used to address environmental-focused course expectations. For instance, students can program a survey that assesses people’s environmental awareness as it relates to the use of computers. The program could calculate the awareness and suggest strategies or provide feedback to users.

Literacy, Mathematical Literacy, Financial Literacy, and Inquiry/Research Skills

Many activities in the computer studies curriculum requires students to practice and develop oral, written, and visual literacy skills. Students will be required to brainstorm ideas and effectively communicate them to their team members. They will need to be able to justify their choices for decisions taken in the design process and will need to be able to communicate them clearly to their audience in an oral presentation with visual support. They will be required to compose written reports on their progress and outline the steps taken during the design process in order to effectively convey their message to the reader. Students will be learning specialized terminology which they will be expected to use appropriately and precisely in their communication.

In developing programs, students will build on their mathematical literacy. Students will be required to communicate clearly and concisely through the use of tables, diagrams, and/or flow charts. Many components of the computer studies curriculum emphasize students’ ability to interpret and use symbols and charts.

While learning about the different components of a computer, both hardware, software, and operating system, students will understand the importance of making good economical choices when choosing or buying a computer. Financial literacy connections may be made as students learn about their place in the world, as a responsible and compassionate citizen and through critical thinking, decision-making and problem solving that can be applied to real life situations.

In conducting research for their projects, students will be required to explore a variety of possible solutions to their challenge, analysing the context of their data and properly interpreting
They will be required to analyze the source of their information, determine its validity and relevance, and use it in appropriate ways. Teachers can support students by guiding them toward reputable sources including peer-reviewed journals. The ability to locate, question, and evaluate information allows a student to become an independent, lifelong learner.

The Ontario Skills Passport and Essential Skills

The Ontario Skills Passport (OSP) is a web-based service that can track students’ Essential Skills (such as reading, writing, and problem solving) and work habits (such as working safely and being reliable). These skills and work habits are easily transferable from school to work and are useful for employers looking to assess potential candidates for cooperative education placements. The OSP is also useful for students looking to assess, build, document, and track their skills through their educational, professional, and personal experiences. More information about the OSP can be found on the ministry website, http://skills.edu.gov.on.ca.

The Ontario First Nation, Métis, Inuit Education Policy Framework

The Ontario First Nation, Métis, and Inuit Education Policy Framework is based on the vision that all First Nation, Métis and Inuit students in Ontario will have the knowledge, skills and confidence they need to successfully complete their secondary education to pursue postsecondary education or training and/or to enter the workforce. They will have the traditional and contemporary knowledge, skills, and attitudes required to be socially contributive, politically active, and economically prosperous citizens of the world. All students in Ontario will have knowledge and appreciation of contemporary and traditional First Nation, Métis, and Inuit traditions, cultures, and perspectives.

The Faculty of Engineering Secondary School abides by the goals stated in the Ontario First Nation, Métis, and Inuit Education Policy Framework to provide a supportive and safe environment for all FNMI students. These goals include:

- Increase the level of student achievement
- Reduce gaps in student achievement
- Increase the levels of public confidence

For example, the school will strive to develop awareness among teachers of the learning styles of First Nation, Métis, and Inuit students and instructional methods designed to enhance the learning of students, such as incorporating meaningful First Nation, Métis, and Inuit cultural perspectives and activities when planning instruction, and implementing strategies for developing critical and creative thinking.

The First Nation, Métis, and Inuit students will also have access to the support, activities and resources offered by the uOttawa Indigenous Resource Centre Mashkawaziwogaming. For example, students can have access to student mentoring from a university student, individual or group meeting with and Elder in residence, and social and cultural events to participate in, if they wish to.
The Faculty of Engineering Secondary School, as part as the University of Ottawa also supports the uOttawa Indigenous Action Plan Framework for 2019-2024 which is designed to facilitate the inclusion of First Nation, Métis, and Inuit students and support the specific needs of the indigenous community.

Career Education

In this era of technological innovation with rapidly evolving technologies, employers are always on the lookout for candidates with strong technical skills who can problem-solve effectively, think critically, and work collaboratively. These are the exact skills that will be developed through computer studies courses. In going through the design process, students will develop skills in: research, analysis, creativity, problem-solving, design, and presenting. They will practice these skills through both independent and group work.

Cooperative Education and Other Forms of Experiential Learning

Cooperative education and other forms of experiential learning, such as job shadowing, work experience, and field trips, allow students to apply the skills they’ve learned in the classroom to real-world work environments. They help students learn about the possible careers and employment opportunities in various fields of work, as well as broadening their knowledge of workplace practices and employer-employee relationships.

Students who choose a computer studies course as the related course for two cooperative education credits are able, through this packaged program, to meet the group 1, 2, and 3 compulsory credit requirements for the OSSD.

Teachers must assess the health and safety of placements and ensure that their students understand their rights as they relate to health and safety, privacy and confidentiality, and abuse and harassment in the workplace.

All cooperative education and other workplace experiences will be provided in accordance with the ministry’s policy document Cooperative Education and Other Forms of Experiential Learning: Policies and Procedures for Ontario Secondary Schools, 2000.

Planning Program Pathways and Programs Leading to a Specialist High Skills Major

Computer studies courses are well suited for programs leading toward a Specialist High Skills Major (SHSM) or programs leading toward an apprenticeship or workplace destination. Computer studies courses can also be combined with cooperative education credits in order to provide the workplace experience necessary for some SHSM programs, apprenticeships, and workplace destinations. SHSM programs would also include sector-specific learning
opportunities offered by employers, skills-training centres, colleges, and community organizations.

Health and Safety in Computer Studies

The most common health and safety concerns associated with repeated computer use are eye strain and musculoskeletal injuries (including repetitive strain injuries). Teachers will ensure that work stations are ergonomic and that students maintain good posture and take frequent eye and body breaks. Students will also be taught about emotional and health risks common among heavy computer users, particularly social isolation.

Teachers will assess any risks associated with field trips including the transportation risks and risks at the visiting location and communicate these risks with parents and students. When activities take place outside of the predictable classroom environment, it is the teacher’s duty to ensure the health and safety of students is maintained.

Resources

No textbook is required for this course, although the teacher will supply articles and blogs for students to read in order to extend their knowledge of the course. Students will be given access to all course material in class and will be given access to computer laboratories during and after class hours in order to continue their learning. Students will also be given access to any system required for the course, such as Travis CI, GitHub, Eclipse and SourceTree.